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Abstract.On-chip diffractive optical neural networks (DONNs) bring the advantages of parallel processing and
low energy consumption. However, an accurate representation of the optical field’s evolution in the structure
cannot be provided using the previous diffraction-based analysis method. Moreover, the loss caused by the
open boundaries poses challenges to applications. A multimode DONN architecture based on a more precise
eigenmode analysis method is proposed. We have constructed a universal library of input, output, and
metaline structures utilizing this method, and realized a multimode DONN composed of the structures
from the library. On the designed multimode DONNs with only one layer of the metaline, the classification
task of an Iris plants dataset is verified with an accuracy of 90% on the blind test dataset, and the
performance of the one-bit binary adder task is also validated. Compared to the previous architectures,
the multimode DONN exhibits a more compact design and higher energy efficiency.
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1 Introduction
Current electronic computing devices are faced with the chal-
lenges of limited bandwidth, high power consumption, and high
cost.1 These challenges promote the research enthusiasm of
optical neural networks (ONNs).2,3 This is attributed to the
high bandwidth and high parallelism characteristics of light,
which are manifested in the ONNs composed of Mach–Zehnder
interferometers (MZIs),4–6 micro-rings resonators (MRRs),7–9

scattering10 and diffraction11–15 structures. It is worth noting that
on-chip ONN is more competitive on portability and footprint,
and even some commercial companies have been established.16

However, with the growth of data dimension or processing
depth, the overheads in footprint and the number of devices
of the MZI network or MRR array increase significantly and
require complex correction.7,17–21 Conversely, on-chip diffractive
optical neural networks (DONN) exhibit remarkable integration
capabilities.11,22–24

In our preceding studies, the length of the silicon (Si) etching
slots in the DONNs is optimally designed to modulate the

phase of the optical field carrying information, allowing clas-
sification, regression, and convolution computations to be
actualized.11,25–28 Notwithstanding these advancements, certain
challenges have emerged. Specifically, to ensure stable interfer-
ence in the DONN, a relatively large spacing between metalines
and open boundaries is required, leading to severe light leakage
and a substantial footprint. In addition, the previous diffraction
analysis method (DAM) exhibits a decrease in accuracy as the
number of metalines increases. Meanwhile, DAM is insufficient
for analyzing the evolution and loss of the optical field in the
output ports.

In this paper, we propose a multimode DONN structure,
in which eigenmodes are utilized as neurons. In multimode
DONN, the metaline formed by Si etching slots manipulates
the coupling between eigenmodes. This coupling mechanism
physically realizes the connection of neurons. The correspond-
ing eigenmode analysis method (EAM) is used to analyze the
evolution of the optical field in multimode DONN, which has
higher accuracy and faster calculation speed. Based on this
method, a universal library including the metalines, the input
and output structures are constructed. The assembled multimode
DONNs complete the classification tasks of the Iris dataset
and one-bit binary adder through optimization. With a smaller
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footprint and higher energy transfer efficiency, the multimode
DONN has the potential to provide higher computing power
for the next generation of artificial intelligence (AI) platforms.

2 Structure and Principle
Figure 1(a) shows the architecture of the multimode DONN.
The input, output, and metaline structures are connected by
the multimode waveguide, where the metaline consists of an
arrangement of subwavelength units with a lateral period of
0.5 μm including the Si etching slots region and non-etching
area, as shown in Fig. 1(b). The length and width of the Si etch-
ing slot are 1.1 and 0.2 μm, respectively. The input structure
utilizes the width of the multimode waveguide, and several input
waveguides are arranged appropriately to realize the input of the
optical field modulated with information, as shown in Fig. 1(c).
The optical field is guided by the multimode waveguide, then

modulated by the metaline, and finally reaches the output struc-
ture. Two types of output structures are designed by multiplex-
ing space or modes. One is a space-only multiplexing structure,
where multiple inverse tapers are connected at the end of the
multimode waveguide to become output waveguides, as shown
in Fig. 1(e). The other is a structure that multiplexes both
space and modes, such as Fig. 1(f). The inverse tapers are
connected first, and then the asymmetric directional coupler is
connected to construct a two-mode demultiplexer, which can
guide the TE0 and TE1 modes in the bus waveguide to different
output ports. The output of multimode DONN is obtained by
sampling the optical power with photodetector (PD) at the
output port.

By analyzing the transmission and coupling of the eigenm-
odes, the evolution of the optical field in multimode DONN can
be obtained. Therefore, the EAM is used to design and analyze
multimode DONN, and the eigenmodes in multimode DONN

Fig. 1 Multimode DONN and EAM. (a) Multimode DONN. As an example, the width of the multi-
mode waveguide is 6 μm. There are 19 eigenmodes in the lateral direction. (b) The details of
the metaline. The length and width of the Si etching slot are 1.1 and 0.2 μm, respectively.
There are 12 positions for the Si etching slot to be placed with a lateral period of 0.5 μm, which
is filled with silica. As shown in (c)–(f), the coupling between the eigenmodes physically enables
the network connection. (c) Input structure. Each input fundamental mode field excites the
response separately, which is decomposed into the 19 eigenmodes. (d) The 19 eigenmodes
propagate independently, and the 19 responses are excited after passing through the metaline.
The responses are decomposed into the 19 eigenmodes again. (e) The output structure of
the multiplexing space. The 19 eigenmodes excite the 19 responses, then part of the energy
in the responses is coupled to the three output waveguides, and the rest leaks out. (f) The output
structure of the joint multiplexing space and mode with a total of four output ports.
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are utilized as neurons, as will be demonstrated in the following.
The multimode waveguide in Fig. 1(a) with width and thickness
of 6 and 0.22 μm, respectively, is taken as an example. There are
a limited number (N ¼ 19) of eigenmodes in the lateral direc-
tion. Any optical field E that can propagate stably in the wave-
guide can be expanded into a superposition of eigenmode
optical fields En,

29 and the coefficient of the superposition is an:

E ¼
XN
n¼1

anEn; (1)

an ¼
R
E ×H�

n · dSR
En ×H�

n · dS
; (2)

where En and Hn represent the electric and magnetic fields of
the preset n’th eigenmode, respectively. The evolution of the
optical field in the multimode waveguide is the result of multi-
mode interference. Different eigenmodes propagate independ-
ently with their propagation constant βeff ½n�, and the total
power is P ¼ P janj2Pn, where Pn is the power of the preset
n’th eigenmode. The part of the optical field that cannot propa-
gate stably in the multimode waveguide will appear outside
Eq. (1) in the form of residuals, which will be dissipated in
propagation, so the actual optical field approaches E as it prop-
agates.

Since the optical field response in linear materials satisfies
the superposition principle, as long as obtaining the response
Eresponse½n� of the metaline stimulated by n’th eigenmode, the
response Eresponse of the metaline to any input E can be obtained
by summing Eresponse½n� weighted an in Eq. (2). Moreover,
Eresponse½n� can also be formed by weighting the eigenmodes just
like Eq. (1), where the weight of m’th eigenmode is wnm. In
other words, the metaline makes a coupling connection with
a fixed weight wnm between the n’th eigenmode at the input
and the m’th eigenmode at the output. This connection can
be fully expressed by the matrix wNN of N × N dimensions.
Once wNN is obtained, Eresponse can be calculated:

Eresponse ¼
XN
n¼1

an · Eresponse½n� ¼
XN
n¼1

an
XN
m¼1

wnm · Em

¼
XN
n¼1

XN
m¼1

wnm · an · Em: (3)

It should be noted that in Eq. (3), Em is only related to the
multimode waveguide, and wnm is only related to the metaline.
The an fully expresses the input.

The multimode DONN serves as a mode converter,30 as
shown in Figs. 1(c)–1(f). The optical fields in the three input
single-mode waveguides are phase- or amplitude-modulated
and injected into the multimode waveguide, and the responses
are decomposed into 19 eigenmodes. This process realizes
the dimensionality of the input data to multiple eigenmodes.
The 19 eigenmodes with information are independently propa-
gated forward with their respective propagation coefficients.
Subsequently, the Si etching slots in the metaline perturb
the phase distribution of the optical field, thereby influencing
the distribution of 19 eigenmodes and achieving mutual cou-
pling among them. The output structure allows 19 eigenmodes

to be coupled to the output waveguides. However, not all ei-
genmodes can couple losslessly to the output mode, otherwise,
it would violate the reciprocity theorem.31 The mode coupling
matrix of the output structure determines the proportion of
each eigenmode that contributes to the output, with the remain-
ing portion dissipating as a loss.

Through such multimode coupling, the complex connection
of the neural network is realized physically. It should be noted
that eigenmodes in the multimode DONN are equivalent to
neurons, instead of the slot groups11 in the previous DONN,
as discussed in Sec. 4.1.

3 Result
Based on the EAM proposed above, a universal library consist-
ing of the metaline, the input, and the output structures is estab-
lished. The assembled multimode DONN is designed to
complete the verification tasks, which include the classification
task of the Iris plants dataset and one-bit binary adder.

3.1 Build Library: Metalines, Input, and Output
Structures

The multimode waveguide with a wideness of 6 μm and thick-
ness of 0.22 μm is still used as the basic structure. As shown in
Fig. 1(b), on the lateral side of this multimode waveguide, there
are 12 optional locations for placing the Si etching slot with a
lateral period of 0.5 μm. Each slot can be placed or removed,
resulting in a total of 212 ¼ 4096 various metalines. There is
a total of 19 eigenmodes in the lateral direction. The response
Eresponse½n� of each metaline excited by each input eigenmode is
obtained by var-FDTD simulation. Subsequently, the response
is used to calculate the mode coupling matrix wNN according to
Eq. (2). This matrix is recorded in the library and associated
with the identification number of the metaline. The metalines
in the library can be called at will to take the corresponding
matrices to participate in the design and calculation. For the
visualization of the mode coupling matrices, please refer to
Appendix B.

The mode coupling matrices of the input and output struc-
tures proposed in Sec. 2 are similarly obtained. For the input
structure as shown in Fig. 1(c), different input ports (IN) are
injected with optical fields respectively, and the responses are
obtained for calculating win

N×IN according to Eq. (2). It should
be noted that the dimension of this matrix is the number of ei-
genmodes (N) multiplied by the number of IN. In the output
structures as shown in Figs. 1(e) and 1(f), the response on each
port after each eigenmode excitation is obtained, and then the
mode coupling matrix wout

OUT×N is obtained. This is a matrix with
the number of output ports (OUT) multiplied by the eigenmode
number (N). If higher-order eigenmodes are considered on the
output waveguide, an additional dimension, i.e., the number of
eigenmodes, is required. The constructed input and output struc-
tures realize the dimensionality increase and decrease of data,
and the metalines implement the complex connection.

As shown in Fig. 2, when the task is defined, the input and
output structures that fit the data dimension are picked out from
the library, and they are combined with the metalines in the
library to become the potential multimode DONN structures.
The port-to-port transmission matrices of these potential struc-
tures can be quickly obtained by multiplying the mode coupling
matrices of the separate parts, which avoids time-consuming
electromagnetic simulations while maintaining high accuracy,
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as will be verified in Sec. 4.1. After that, the training dataset
is loaded into the port-to-port transmission matrices of these
potential DONN structures, and the output results will be
evaluated, which may be prediction accuracy, or the desired
logical result, etc. A data augmentation approach32 can be
employed. Additional noise added to the training dataset14

can enhance the robustness of the multimode DONN. The best
of these structures will be selected as the final multimode
DONN design. In the next section, the photonic computing tasks
will be validated.

3.2 Iris Classification

To complete the Iris classification task, the input structure with
four ports satisfying the input data dimension and the output
structure with three ports satisfying the classification categories
are first selected from the library. Cooperating with the meta-
lines in the library, the assembled multimode DONN is used
to complete the task, as shown in Fig. 3(a) (more details in
Appendix A). Three kinds of Iris are classified according to
the length and width of the calyx and petals. These data are nor-
malized and mapped to 0 − π, which are phase modulated to the
fundamental mode field of the input waveguides. This optical
field is fed into the multimode DONN and passes through
the metaline. The category corresponding to the output port
receiving the highest power is judged as a classification result.

To train the multimode DONN for the Iris classification task,
the training methodology in Sec. 3.1 is employed. The training
dataset is loaded into the port-to-port linear transformation
matrices of the potential multimode DONN, which is obtained
by multiplying the mode coupling matrices of the separate parts
in the library. The intensity of each output port is calculated,
and the accuracy of the classification results of the different po-
tential multimode DONNs is recorded. The metaline numbered

as 1438 in the library has the highest accuracy and is selected
as the preferred structure. The test dataset is identically loaded
into the multimode DONN with the selected metaline, and the
accuracy of the blind test dataset is 90%. The confusion matrix
of the test dataset is shown in Fig. 3(c), and the fundamental
mode amplitudes of the three output ports for the test dataset
are shown in Fig. 3(d). Var-FDTD has conducted simulation
verification of the device, as shown in Fig. 3(b), which has
a correct classification result and shows the same accuracy rate
on the Iris test dataset. Figure 3(d) also shows the power of
output. Compared with the previous works,11,25,28 the energy
efficiency has been significantly improved. It means a higher
tolerance for detection noise. The computing part of the whole
device occupies about 6 μm × 15 μm, which has the character-
istics of high integration.

3.3 One-Bit Binary Adder

Similarly based on the library, a three-input structure that
multiplexes space, a metaline, and a four-output structure that
multiplexes space and mode, are assembled to complete a
one-bit binary adder, as shown in Fig. 4(a) (more details in
Appendix A). The four input cases in the truth table and
a constant reference bias are modulated to the phase of the
input optical field, as shown in Table 1. 0 (1) corresponds
to 0 (π), and the reference bias phase continues to be 1,
i.e., π. The power of the symmetrical upper and lower ports
is detected and compared. If the power of the upper (lower)
port is higher, the output is 1 (0). Similar to the training meth-
odology in Sec. 3.1, the metaline number 347 is selected be-
cause of the higher contrast between the upper and lower ports.
Figure 4(b) shows var-FDTD simulation results for four input
cases. Moreover, the power of each output port is shown in
Fig. 4(c) on the right.

Fig. 2 Training process and application demonstration of the multimode DONN composed of the
structures in the library. When the task is defined, the training data are loaded into a variety of the
potential multimode DONN structures composed of the input, output, and metalines in the library,
as shown by the dotted lines. The performance of each potential multimode DONN is evaluated
using the port-to-port transmission matrix and the best one is selected. Live or test data will be
loaded in.
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Fig. 3 The classification task of the Iris plants dataset. (a) Multimode DONN structure. The cat-
egory corresponding to the output port receiving the highest power is judged as a classification
result. PD, photodetector. (b) A set of Setosa class data is simulated by var-FDTD. (c) The con-
fusion matrix of the test dataset. (d) Fundamental mode amplitudes for the three output ports of
the test dataset. The gray and yellow bars mark the dataset presented in (b) and the three
misclassified datasets, respectively.

Fig. 4 One-bit binary adder. (a) Multimode DONN and discriminant structure. (b) Var-FDTD
simulation of four input cases. (c) The power of the four output ports normalized to the input port
power. Ports 1 to 4 indicate the marked ports, as shown by the dashed gray lines.
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4 Discussion

4.1 Comparison of the Multimode DONN with
the Previous DONNs

There are three structural differences between the previous
DONNs based on DAM and the multimode DONNs. In the pre-
vious DONNs, first, metalines are arranged in a Si slab with
lateral-open borders, as shown in Fig. 5(a). The lack of borders
is to reduce reflection, but the energy leaking out is not utilized.
Second, multiple14,25 (≥2, normally) identical Si etching slots in
metaline need to be clustered together to form a quasi-periodic
medium structure group, which occupies multiple lateral periods
of the slot, so that the previous DONNs become very wide.
Third, the spacing between adjacent metalines needs to be much
greater than the lateral period of the slot, otherwise far-field sta-
ble interference cannot be formed and the phase shift created by
the structure groups, as shown in Fig. 5(b), will also change due
to excessive inclination angle,14,25 which will seriously affect the
accuracy of the DAM. All of the above problems arise to meet
the preconditions of DAM, which significantly limits the inte-
gration capability and the optical energy efficiency of the pre-
vious DONNs. As long as the multimode DONN no longer
relies on the DAM, these problems can be avoided.

To demonstrate the advantages of EAM over DAM in terms
of accuracy and computational overhead, the following struc-
tures are designed. Identical metalines are cascaded and de-
ployed respectively in the same position of the lateral-open
Si slab and the multimode waveguide with a transverse width
of 20 μm, such as that shown in Figs. 6(a) and 6(c). The spacing
from the input facet to the first metaline and from the first meta-
line to the second is 40 μm, which fits the length limit of the
DAM as much as possible (more details in Appendix A).
Ten groups of Si etching slots are deployed in each metaline,
and the length of the groups is randomly set at 0 to 2.2 μm

so that the phase modulation of each group can cover the entire
2π, as shown in Fig. 5(b). The input waveguides are loaded with
optical fields with random amplitude and phase. The discrep-
ancy between the normalized optical fields Ê and E, obtained
by DAM (EAM) and var-FDTD simulation, respectively, is
measured by root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

X
P

ðjÊj − jEjÞ2
s

; (4)

where P ¼ 1122 is the number of sampling points. As shown by
the blue line in Fig. 6(b), the downward trend represents a
gradual improvement of the accuracy in DAM as the propaga-
tion length increases. This confirms the problem that the
spacing between the adjacent metalines cannot be too short.
The RMSE rises sharply after each metaline, and the RMSE
at the end has reached 0.124, which is 4.6 times that of the input
(0.027). The difference between the optical field calculated by
the DAM and var-FDTD is obvious, as shown in Figs. 6(e) and
6(f). However, the RMSE of the EAM grows slowly, as shown
by the green line in Fig. 6(b). Therefore, the spacing does not
significantly affect the accuracy of EAM. After passing through
the metalines, the RMSE does not rise evidently, and RMSE ¼
0.049 at the output is 1.63 times that of RMSE ¼ 0.03 at the
input. As shown in Figs. 6(g)–6(i), in front of the metalines
or at the end, compared with the DAM, the field obtained by
the EAM has a higher fitting accuracy with var-FDTD. In
the process of constructing Fig. 6(b), the DAM takes 7400 s,
which is about 104 times longer than the EAM takes 71 s.
This demonstrates that the EAM has less computational over-
head. A personal desktop computer was utilized for simulation
and computation.

The characteristic of multimode DONN to save optical en-
ergy is also reflected. The ratio of the optical power obtained
at the end cross-section of the structure is defined as the energy
transfer efficiency (T). The structure with the multimode wave-
guide reflects the light that leaks from the open boundary in the
previous structure, thereby increasing the energy transfer effi-
ciency from T ¼ 0.68 in previous structure to T ¼ 0.95. The
remaining loss comes from the dissipation in the transmission
process. As the number of metalines increases, the difference in
T becomes more obvious. Higher transmission efficiency
means smaller input energy requirement and lower detection
sensitivity, which is beneficial to reducing computing power
consumption.

Table 1 The truth table of a one-bit binary adder.

Input

BIAS

Output

IN-1 IN-2 OUT-1 OUT-2

0 0 1 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

Fig. 5 Previous DONN layout. (a) Every three identical Si etching slots form a group in the meta-
line, which is laid in a lateral open Si slab. wpq represents the diffractive connection between the
points p and q, which are placed in the adjacent metalines. (b) Phase shift or transmittance versus
the length of the group, except for the length of the group, and the parameters of the Si etching slot
are consistent with Fig. 1(b) (more details in Appendix A).
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By comparison, EAM demonstrates higher analysis and de-
sign accuracy with less computational overhead. This signifi-
cant advantage over DAM promotes the design of multimode
DONN, achieving both high precision and speed. The formation
of the multimode DONNs’ boundaries is attributed to the ei-
genmodes that serve as the foundation for analysis. This enhan-
ces energy transfer efficiency while allowing for a further
reduction in the footprint of the multimode DONN to increase
integration density. The following section will provide evidence
for this.

4.2 Footprint and Optical Loss

It is beneficial to reduce the footprint by making full use of the
multimode. In the ONN implemented by the MZI network,4–6

a single waveguide has only one eigenmode, and the coupling
between adjacent eigenmodes is accomplished by a directional
coupler.17 The distance between the arms is generally main-
tained at more than a few microns to ensure that no crosstalk
occurs. Potential multimode in this space is not utilized as much
as possible. To realize the coupling between each single mode,

Fig. 6 The optical fields calculated by the DAM and EAM are compared. (a) The amplitude of the
optical field in the lateral open device obtained by var-FDTD. (b) RMSE of DAM or EAM varies with
the propagation distance. The gray narrow strip areas are the metalines. (c) The amplitude of the
optical field in the multimode device is obtained by var-FDTD simulation. (d)–(i) Comparison of the
optical fields calculated by the DAM (EAM) or var-FDTD in front of the first and second metalines,
and at the end.
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a multilayer directional coupler array4,5,18,19 is necessary; how-
ever, this coupling connection between the modes can be com-
pleted by a metaline. The previous DONN is designed based on
the DAM. Since the single neuron must be mapped by the Si
etching slot group, the lateral period of the neurons is about
1.5 μm,11 while the lateral density in multimode DONN is about
315 nm per neuron (mode), and the EAM ensures that the multi-
mode DONN no longer requires large metaline spacing. As a
result, the footprint of the multimode DONN in this work is
at least nine times smaller than that of previous identical or
similar tasks (classification or convolution). The comparison
results are shown in Table 2.

The optical loss introduced by the multimode DONN as a
passive device is considered. Taking the total optical energy in-
jected into the device as the reference value, the maximum op-
tical power at the output port is utilized to calculate the typical
optical loss. However, the previous works11,27,28,33 overlooked the
output structures, allowing for comparison solely based on the
optical power at the output cross-section, and the typical losses
based on var-FDTD simulation are presented in the last column
of Table 2. In Fig. 3(b), the typical loss for the multimode
DONN in performing the Iris classification task is below
7.69 dB, which is lower compared to the previous works. When
considering the loss caused by the output structures of other
works, this difference becomes even more pronounced. Hence,
the multimode DONN exhibits energy-saving characteristics.

4.3 Metalines and I/O Structure

The metaline is the core structure for computation in the multi-
mode DONN, selected from the library by EAM. In this work,
the task-agnostic library comprises 4096 metalines constructed by
exploring the presence or absence of etching slots. As the etching
slots in metaline share the same design, the consistent errors man-
ifested during fabrication can be incorporated into the structure
during library construction. This helps mitigate the impact of fab-
rication errors. The computation of the mode coupling matrices for
the metalines in the library was completed using three server-grade
computers over about 60 h. When two metalines are symmetric,
their mode coupling matrices have the following relationship:

wnm ¼
�

wsymmetry
nm ðnþmÞ is even

−wsymmetry
nm ðnþmÞ is odd : (5)

This allows for the calculation of some metalines to be omitted,
aiming to save time. Phase-change materials34,35 can fill the Si
etching slots, and its two steady states of the refractive index cor-
respond to the presence or absence of the etching slots. Cascading
metalines contribute to improving the computational performance
of the multimode DONN since it enhances the diversity of the
mode coupling matrices. For instance, the accuracy of the Iris

classification task in the multimode DONN cascading two meta-
lines can be further improved to 93.3% (more details can be found
in Appendix A).

The structures that multiplex space or modes are adopted as
input-output configurations in this work. Many new compact
and stable mode or meta-structure device36,37 can be included
in the library when their mode coupling matrices are obtained.
In this work, data are loaded into the multimode DONN by
phase modulation, as metalines manipulate the phase of the
optical field, and the input power is stable. In addition, phase
modulators are simple and mature.

4.4 Scalability of the Multimode DONNs

With the aim of enhancing the data processing capability of the
multimode DONN, the following approaches can be considered.
First, higher-order eigenmodes in the multimode DONN can be
multiplexed to expand input-output capacity, requiring addi-
tional higher-order mode multiplexers and demultiplexers.38

Furthermore, by deploying multiple multimode DONNs in a
distributed and layered manner,39 the data processing capacity of
the multimode DONN can be further increased, allowing optical
fields to interact across multiple multimode DONNs.

Library-based EAM can be combined with other differential
optimization methods. The multimode DONN designed based
on the library can serve as a seed structure for optimization us-
ing particle swarm optimization27 or the adjoint field method.40

In addition, utilizing EAM can bypass the positions where struc-
tures are not allowed to be deployed and input-output structures,
enhancing the calculation speed of the optical field.

Built upon the foundation of multimode waveguides, the
multimode DONN is compatible with integration into multi-
mode systems,41 achieving an integrated solution for transmis-
sion and processing. Optoelectronic hybrid networks have
emerged as a new application paradigm.15 The multimode
DONN can perform feature extraction and processing of data,
while electronic neural networks carry out further computations
on the data. The electronic neural network enhances the flexi-
bility of the hybrid network28 and can correct system errors42 to
adapt to more complex tasks.

5 Conclusion
In this paper, we introduce a compact multimode DONN
structure, where eigenmodes are employed as neurons.
Simultaneously, leveraging the proposed EAM, a universal
library of structures, including metalines, input, and output
structures, is established. Each structure is characterized by a
mode coupling matrix. Through optimization, the most suitable
structures are selected to compose the multimode DONN for
validation tasks, including the Iris classification and one-bit
binary adder. For similar or identical tasks, the multimode

Table 2 Comparison with previous works.

Works Design method Footprint (μm2) Number of input × output Typical loss (dB)

Ref. 11 DAM 1000×280 4×3 −14.55

Ref. 28 DAM 1200×75 9×2 −22.01

Ref. 33 DAM and fitting network 30×50 4×3 −8.86

Ref. 27 Particle swarm search 45×30 4×3 −13.01

This work EAM and library 15×10 4×3 −7.69
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DONN exhibits a smaller footprint and consumes less optical
power budget. It implies that the multimode DONN has higher
integration density and scalability capability. Benefiting from
the good compatibility and precise optical field representation
capability of the EAM, the designed multimode DONN offers
a new solution for compact and parameterized ONNs.

6 Appendix A: Structure and Simulation
Details

The parameters of the structure shown in Fig. 3(a) are as
follows. The widths of the input and output waveguides are
both 450 nm, with spacings of 1.5 and 2 μm, respectively.
The distance from the front of the multimode waveguide to the
metaline is 3.2 μm, while the distance between the metaline and
the output taper is 1.9 μm. The length of the taper is 8 μm.

The parameters of the structure shown in Fig. 4(a) are as fol-
lows. The widths of the input and output waveguides are both
450 nm. The spacing between input waveguides is 2.775 μm.
The distance from the front of the multimode waveguide to
the metaline is 5.7 μm, while the distance between the metaline
and the output taper is 2 μm. The output structure comprises
two symmetrical two-mode demultiplexers. The first taper has
a length of 31 μm, with a width gradually varying from 3 μm to
966 nm. The coupling region’s length is 22.6 μm with a spacing
of 200 nm. The second taper has a length of 17.3 μm, with a
width gradually varying from 960 to 450 nm.

The parameters of the structure shown in Fig. 5(b) are as
follows. Si etching slots consistent with Fig. 1(b) are arranged
periodically at a 500 nm pitch. The length varies within the
range of 0 to 2.2 μm. Sampling points are set at 100 nm before
and 2.3 μm after the center point of the front surface of the
slot to observe phase variations. The difference between the ob-
served phase change and the background phase without etching
is documented.

The spacing of the input waveguides in Figs. 6(a) and 6(c) is
1 μm, with a width of 450 nm.

The multimode DONN with two layers of metalines is em-
ployed to accomplish the Iris classification task. In comparison
to the structure depicted in Fig. 3(a) of Sec. 3.2, the second layer
of metalines is positioned 2.5 μm behind the first layer.
Following a multimode waveguide with a length of 1.05 μm,
the same output structure is cascaded. The combined structure
of metaline 2750 and metaline 748 is chosen.

The var-FDTD grid within the metaline region has dimensions
of 8, 5, and 14.2 nm in the x, y, and z directions, respectively.

7 Appendix B: Visualization of the Mode
Coupling Matrices for the Metalines in
the Library

In Sec. 3.1, the 4096 metalines in the library are grouped based
on the number of Si etching slots. As shown in Fig. 7, the
quantity of metalines in each group is listed above the images.

Fig. 7 Average and variance of mode coupling matrices categorized by the number of Si etching
slots. The 4096 metalines obtained in Sec. 3.1 of the main text are classified based on the number
of etching slots, ranging from 0 to 12. The quantity of the metalines in each group is listed above
the images. The top image in each group displays the average amplitude of the elements in
the mode coupling matrices, while the bottom image shows the variance. The numbers in the
horizontal direction are the input mode numbers, and the numbers in the vertical direction are
the output mode numbers.
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The average amplitude of the mode coupling matrix elements
for each group of metalines is presented in the top images.
The bottom images depict the variance. With an increasing
number of etching slots, the mode coupling matrices gradually
diverge from the identity matrix, and the variance initially in-
creases and then decreases.

Code and Data Availability
The code and data that support the findings of this study are
available from the corresponding author upon reasonable request.
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